博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
C++ Template 基础篇(一):函数模板
阅读量:4177 次
发布时间:2019-05-26

本文共 3512 字,大约阅读时间需要 11 分钟。

Template 基础篇-函数模板

Template所代表的泛型编程是C++语言中的重要的组成部分,我将通过几篇blog对这半年以来的学习做一个系统的总结,本文是基础篇的第一部分。

为什么要有泛型编程

C++是一门强类型语言,所以无法做到像动态语言(python javascript)那样子,编写一段通用的逻辑,可以把任意类型的变量传进去处理。泛型编程弥补了这个缺点,通过把通用逻辑设计为模板,摆脱了类型的限制,提供了继承机制以外的另一种抽象机制,极大地提升了代码的可重用性。

注意:模板定义本身不参与编译,而是编译器根据模板的用户使用模板时提供的类型参数生成代码,再进行编译,这一过程被称为模板实例化。用户提供不同的类型参数,就会实例化出不同的代码。

函数模板定义

把处理不同类型的公共逻辑抽象成函数,就得到了函数模板。

函数模板可以声明为inline或者constexpr的,将它们放在template之后,返回值之前即可。

普通函数模板

下面定义了一个名叫compare的函数模板,支持多种类型的通用比较逻辑。

template
int compare(const T& left, const T& right) { if (left < right) { return -1; } if (right < left) { return 1; } return 0;}compare
(1, 2); //使用模板函数
1
2
3
4
5
6
7
8
9
10
11
12

成员函数模板

不仅普通函数可以定义为模板,类的成员函数也可以定义为模板。

class Printer {public:    template
void print(const T& t) { cout << t <
("abc"); //打印abc
1
2
3
4
5
6
7
8
9
10

为什么成员函数模板不能是虚函数(virtual)?

这是因为c++ compiler在parse一个类的时候就要确定vtable的大小,如果允许一个虚函数是模板函数,那么compiler就需要在parse这个类之前扫描所有的代码,找出这个模板成员函数的调用(实例化),然后才能确定vtable的大小,而显然这是不可行的,除非改变当前compiler的工作机制。

实参推断

为了方便使用,除了直接为函数模板指定类型参数之外,我们还可以让编译器从传递给函数的实参推断类型参数,这一功能被称为模板实参推断。

如何使用

compare(1, 2); //推断T的类型为intcompare(1.0, 2.0); //推断T的类型为doublep.print("abc"); //推断T的类型为const char* 
1
2
3

有意思的是,还可以通过把函数模板赋值给一个指定类型的函数指针,让编译器根据这个指针的类型,对模板实参进行推断。

int (*pf) (const int&, const int&) = compare; //推断T的类型为int 
1

当返回值类型也是参数时

当一个模板函数的返回值类型需要用另外一个模板参数表示时,你无法利用实参推断获取全部的类型参数,这时有两种解决办法:

  • 返回值类型与参数类型完全无关,那么就需要显示的指定返回值类型,其他的类型交给实参推断。

    注意:此行为与函数的默认实参相同,我们必须从左向右逐一指定。

    template
    T1 sum(T2 v2, T3 v3) { return static_cast
    (v2 + v3);}auto ret = sum
    (1L, 23); //指定T1, T2和T3交由编译器来推断template
    T3 sum_alternative(T1 v1, T2 v2) { return static_cast
    (v1 + v2);}auto ret = sum_alternative
    (1L, 23); //error,只能从左向右逐一指定auto ret = sum_alternative
    (1L,23); //ok, 谁叫你把最后一个T3作为返回类型的呢? 1 2 3 4 5 6 7 8 9 10 11 12 13
  • 返回值类型可以从参数类型中获得,那么把函数写成尾置返回类型的形式,就可以愉快的使用实参推断了。

    template
    auto sum(It beg, It end) -> decltype(*beg) { decltype(*beg) ret = *beg; for (It it = beg+1; it != end; it++) { ret = ret + *it; } return ret;}vector
    v = {
    1, 2, 3, 4};auto s = sum(v.begin(), v.end()); //s = 10
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11

实参推断时的自动类型转换

编译器进行模板实参推断时通常不会对实参进行类型转换,只有以下几种情况例外:

  • 普通对象赋值给const引用 int a = 0; -> const T&
  • 数组名转换为头指针 int a[10] = {0}; -> T*
  • 函数名转换为函数指针 void func(int a){...} -> T*

函数模板重载

函数模板之间,函数模板与普通函数之间可以重载。编译器会根据调用时提供的函数参数,调用能够处理这一类型的最特殊的版本。在特殊性上,一般按照如下顺序考虑:

  1. 普通函数

  2. 特殊模板(限定了T的形式的,指针、引用、容器等)

  3. 普通模板(对T没有任何限制的)

对于如何判断某个模板更加特殊,原则如下:如果模板B的所有实例都可以实例化模板A,而反过来则不行,那么B就比A特殊。

template
void func(T& t) { //通用模板函数 cout << "In generic version template " << t << endl;}template
void func(T* t) { //指针版本 cout << "In pointer version template "<< *t << endl;}void func(string* s) { //普通函数 cout << "In normal function " << *s << endl;}int i = 10;func(i); //调用通用版本,其他函数或者无法实例化或者不匹配func(&i); //调用指针版本,通用版本虽然也可以用,但是编译器选择最特殊的版本string s = "abc";func(&s); //调用普通函数,通用版本和特殊版本虽然也都可以用,但是编译器选择最特化的版本func<>(&s); //调用指针版本,通过<>告诉编译器我们需要用template而不是普通函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

模板函数特化

有时通用的函数模板不能解决个别类型的问题,我们必须对此进行定制,这就是函数模板的特化。函数模板的特化必须把所有的模版参数全部指定。

template<> void func(int i) {     cout << “In special version for int “<< i << int i = 10; func(i); //调用特化版本;endl;  }

转载地址:http://xptai.baihongyu.com/

你可能感兴趣的文章
Hibernate中的事务概念及其支持的事务类型
查看>>
Hibernate的持久化上下文的事务API
查看>>
Hibernate的Session上下文形式
查看>>
Hibernate的事务模式与反模式
查看>>
Hibernate的乐观锁并发控制机制
查看>>
Hibernate的悲观锁并发控制机制及LockMode
查看>>
Hibernate中的数据的获取策略(fetching)
查看>>
Hibernate中通过HQL/JPQL查询的方式实现动态数据获取
查看>>
Hibernate中通过FetchProfile的方式实现动态数据获取
查看>>
Hibernate中通过JPA entity graph的方式实现动态数据获取
查看>>
Hibernate中的数据获取方式及时机(fetching)
查看>>
Hibernate的二级缓存概述
查看>>
Hibernate二级缓存的全局配置
查看>>
Hibernate应用中通过JPA配置Entity缓存
查看>>
Hibernate中配置二级缓存的并发策略
查看>>
Hibernate的Entity cache(实体缓存)
查看>>
Hibernate中的Query cache(查询缓存)
查看>>
Hibernate的interceptors与events
查看>>
TestNG概述
查看>>
TestNG中测试方法的依赖关系详解
查看>>